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Abstract

The presence of a high level of noise is a characteristic in some tomographic imaging
techniques such as positron emission tomography. Wavelet methods can smooth out noise
while preserving significant features of images. Mallat et al. proposed a wavelet-based
denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise.
In this study, we explore the properties of wavelet phase, with a focus on reconstruction of
emission tomography images. Specifically, we show that the wavelet phase of regular Poisson
noise under a Haar-type wavelet transform converges in distribution to a random variable
uniformly distributed on [0, 27). We then propose three wavelet-phase-based denoising
schemes which exploit this property: edge tracking, local phase variance thresholding, and
scale phase variation thresholding. Numerical results are also presented. The numerical ex-
periments indicate that wavelet-phase techniques show promise for wavelet based denoising
methods.
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1 Introduction

In positron emission tomography (PET), some image reconstruction technique is needed to pro-
cess measurements of observed photons (the “sinogram data”) into an easily grasped visual
image. Image reconstruction algorithms currently in use are based on Fourier transform tech-
niques. The convolution back projection (CBP) method and direct Fourier reconstruction (DFR)
method [STARS1] are the most commonly used image reconstruction methods. These algorithms
are, however, sensitive to noise in the measurements. In particular, noise is a problem in emis-
sion tomography. In PET applications, the sinogram data is an image that may have an average
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photon density of order 10 photons per pixel (nearer 100 per pixel in the numerical experiments
described here) and hence is inherently noisy.

One way to reduce noise sensitivity is to model the emission process as a random process
and to use reconstruction algorithms based on the statistical model. In 1982, Shepp and Vardi
[SHEPS82] introduced a Poisson process model for emission tomography which seems to be an
excellent model. Maximum likelihood (ML) and maximum a posteriori (MAP) methods based
on this model give what we consider to be the best possible reconstruction from noisy sinogram
data.

The problem with the ML and MAP techniques is that they are very expensive in comparison
with Fourier-based techniques. The DFR method requires O(N?log N) operations, and CBP
requires O(N?) operations, where N is the number of detectors. On the other hand, an iterative
ML algorithm (called the EM algorithm) requires O(N*) operations for each iteration, and it
usually takes 50 iterations to achieve sufficient precision [VARDS85]. Even with acceleration
techniques such as Lewitt and Muehllehner’s relaxation method [LEWI86], the EM algorithm

still remains computationally very expensive.

Another way to reduce noise sensitivity is to filter the sinogram data. Several filtering tech-
niques for emission tomography are described in the literature. Linear low-pass filters are easy
to implement in connection with Fourier-based methods and are the current method of choice.
A special low-pass filter called the parabola filter was developed at Washington University for
the purpose of PET noise reduction. The filter is called a “parabola” filter because the window
function is a quadratic function in the frequency domain (the filter is nonetheless a linear filter).
The window function is the product of a triangle function
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where € is the cutoff frequency. Yang [YANGI1] implemented a noise-filtering scheme using
projection onto convex sets. Kuan et al. [KUANS5] developed an adaptive filter for PET image
restoration. According to Yang’s simulation results, the parabola filter is among the most effective
for use in connection with the CBP method, from the standpoint of subjective evaluation of the
resulting reconstructed image. The underlying assumption for using a low-pass filter such as
the parabola filter is that the energy of a typical image is primarily concentrated in its low-
frequency components and that the energy of a random noise is more spread out over the whole
frequency domain. While this assumption seems to be a reasonable one even for the noise in
emission tomography, it is not clear to us that this assumption alone captures the significant
features of the noise present in emission tomography applications. In these applications, the
noise is signal-dependent Poisson-type noise. Furthermore, while the gross structure of an image
appears as low-frequency components, sharp edges as well as small detials give rise to high-
frequency components. Therefore, the linear low-pass filtering unavoidably causes some blurring



of edges and loss of detail from the original image. These can be serious problems in medical
imaging applications, where details may contain the most important messages in the image.

Conventional linear filtering schemes investigated so far are not very satisfactory. The moti-
vation of the research described here was to design an effective and inexpensive filter that took
into account the signal-dependent Poisson noise occurring in emission tomography. We wanted
to obtain an improved but still inexpensive filtering technique that could provide image qual-
ity from inexpensive Fourier methods comparable to that achievable with expensive ML-type
methods.

The filter we have developed is based on a wavelet technique. Basically, edges in a wavelet
transform of the sinogram data at several scales are obtained by using a magnitude (or modulus
maximum) method, spurious edges are discarded by using wavelet “phase” information, and a
filtered or restored sinogram is obtained from retained (and, one hopes, “true”) edges at various
scales. The CBP or DFR method is then used to reconstruct the image from the restored
sinogram.

Signal restoration techniques based on wavelets are often designed and tested using one-
dimensional signals, then applied to two-dimensional signals (images). Mallat et al. [MALL92a,
1992b] proposed a multiscale edge detection and reconstruction scheme that makes use of modulus
maxima of wavelet transforms. Our technique is based on that of Mallat et al., but it makes use of
the “phase,” or direction, of the two-dimensional wavelet transform as well as the magnitude of its
modulus. The phase is a characteristic of two-dimensional wavelets without a one-dimensional
counterpart. Numerical experiments indicate that wavelet phase methods show promise for
denoising in emission tomography applications.

The remainder of this paper is organized as follows: Section 2 introduces wavelet-based
denoising methods, including wavelet phase based-filtering schemes proposed here. Section 3
describes numerical experiments and discusses results.

2 Wavelet-based Denoising

In this section, we summarize image representation and restoration methods, proposed by Mallat
and Hwang [MALL92a] and Mallat and Zhong [MALL92b], that are based on wavelet modulus

maxima. We then introduce wavelet phase-based methods.

Wavelet Modulus and Phase. Let f denote a discrete image; ¢, a low-pass filter; h,, a
highpass filter in the z direction; and h,, a highpass filter in the y direction. Let

¢ =1 (1)
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where x denotes a linear convolution. The wavelet transform of the image f at scale j is defined
by
(WEFWIE S f) = (he % (¢ % [y hy 5 (67 % £, 07 % f). (3)

The original image f = S°f can be reconstructed by an inverse wavelet transform:
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where 6(m,n) is equal to 1 if m = n = 0, and equal to 0 otherwise.

In our study, the filters ¢, h,, and h, are those of the 2D symmetric Haar transform:
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Let b} = —h,, h} = —hy, and ¢*(2,7) = 6(¢,7). Then, hy, hy, g, b}, b}, and g* satisty (5), so
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that the original image can be reconstructed by an inverse wavelet transform (4).

The wavelet modulus of f at scale 5 is defined by
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and the wavelet phase of f at scale j is defined by
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The wavelet transform (W f, Wy]f) at scale j is the gradient of some smoothed version of the
image f (though not, in general, the smoothed version of the image obtained by forming the
convolution f « ¢’). Edges in the smoothed version of a signal are identified with curves along
which the modulus of the gradient is large. The local tangent to an edge curve can be expected
to be perpendicular to the gradient direction and to vary in a smooth manner from pixel to pixel
along the edge, if the edge is a true edge and not an artifact of noise. This expected correlation
in the phase of the wavelet transform at neighboring modulus maxima locations, together with
the complementary fact (discussed below) that the wavelet phase associated with noise can be
expected to be nearly uniformly distributed on the interval [0, 27), is the key fact that the wavelet
phase-based methods proposed here are designed to exploit.

Wavelet Modulus Maxima Method. In the early 1980s, Marr and Hildreth [MARRS0)]
introduced the multiscale edge detection method. They provided a scheme that filters the original
image via a series of low-pass filters with different cutoff frequencies (scales) and detects edges
for each filtered image. In their approach, a Gaussian-type low-pass filter is used as the low-pass
filter, and the Laplacian method is used to find edge locations in the filtered images. Mallat
and Zhong [MALL92b] refined Marr and Hildreth’s approach in the setting of wavelets. In their
technique, the wavelet transform of a noisy image is obtained, and all components of the wavelet
transform except those corresponding to modulus maxima are discarded (in effect, set to zero).
Since noise gives rise to spurious modulus maxima in the wavelet transform, only those modulus
maxima above a certain threshold value are retained; alternatively, since modulus maxima due
to noise are expected to decay more rapidly from scale to scale than modulus maxima due to
true edges, only those modulus maxima that exhibit the correct decay rate from scale to scale
are retained. Thus, some modulus maxima are attributed to noise and are discarded, or set to
zero, along with the wavelet transform components at non-modulus-maximum locations. The
method of Mallat et al., unlike that of Marr and Hildreth, is associated with a natural technique
for reconstructing the image from the edge data. The discarded components of the wavelet
transform are replaced via interpolation from the retained components, the “true” modulus
maxima of the wavelet transform, and an inverse wavelet transform is then performed. The
algorithm is summarized as follows:

1. Take discrete wavelet transforms of the contaminated image.
2. Obtain edge locations by finding local modulus maxima of wavelet transforms.

3. Remove those edges whose moduli either are below a given threshold or else decay faster
than some given ratio or both.

4. Restore discarded wavelet transform components by using an interpolation scheme.

5. Reconstruct signal from the restored wavelet transform by taking the inverse wavelet trans-
form.

Numerical experiments indicate that the algorithm behaves well, at least in applications where
the noise level is relatively low.



Limitations of the Modulus-based Approach. The wavelet modulus maximum method
does not perform well in the medical imaging application considered here. The basic reason
seems to be that a magnitude-based scheme is sensitive to the magnitude of the noise, or more
precisely, to the magnitude the variance of the noise. To remove noise of a large variance,
the thresholds below which modulus maxima are discarded must be large. Since the noise in
emission tomography applications has relatively large variance, the resulting large thresholds
lead to discarding a lot of information about true edges. In addition, although it is shown in
[MALL92a] that the wavelet modulus maxima of noise decay faster than modulus maxima of
true signals from scale to scale under some circumstances, we have not observed a substantial
difference in the decay rates in the application considered here. See [LIN94] for details.

Wavelet Phase Filter Method. As noted above the modulus maxima based method does
not take into account the expected correlation between phase of the wavelet transform between
neighboring edge pixels of an image. In [MALL92a], it was mentioned that one might incorporate
wavelet phase information into their basic approach. We have tried to do this, and we describe
the analysis and the resulting methods here.

The distribution of wavelet phase of noise can be characterized, if one assumes the statistical
model which Shepp and Vardi developed. We state results here and refer the reader to [LIN94]
for proofs of the next two theorems.

Let L={(i,j) : ¢,j are integers} be a two-dimensional lattice. A stochastically modeled
discrete image is a collection of random variables indexed in the lattice L, denoted by {X(z, ) :
(¢,7) € L}. (¢,7) is referred to as a pixel. Let u(¢,7) denote the mean of X(i,7). €(z,5) =
X(2,7) — pli,g) is referred to as noise. €(i,7) is called Gaussian noise if X (7, ;) is Gaussian
distributed, and Poisson (or Poisson-type) noise if X (¢, j) is Poisson distributed. The following
theorem states the distribution of the wavelet phase of Gaussian noise under the 2D symmetric
Haar transform.

Theorem 1: Suppose that {e(i,j) : (1,7) € L} are independent Gaussian noises (both with
mean zero, though possibly with different variances). Let Wye(i,j) and Wye(i,j) denote the
Wyeli,j)

components of the 2D symmetric Haar transform of €(i,7). Then 0(i,5) = Arctany ) s

uniformly distributed on [0, 2x) for each (i,j).

For each pixel (¢, 7), let €,(7, j) be a sequence of Poisson noise with variance nu(i, 7). The Poisson
noise €,(¢,7) is said to be regular if for disjoint (¢1,71) and (2, 42), (i) €.(¢1,71) and €,(22,j2) are
en(i1,41) en(i2,52)

nuin,g) nufiz,g2)
Gaussian random variables as n — oo. For the 2D wavelet transforms of the regular Poisson
noise, we have the following main theorem.

independent; (ii) converge in distribution to two independent standard

Theorem 2: Let Woe,(t,5) and Wye,(2,7) denote the components of the 2D symmetric Haar

transform of regular Poisson noise €,(t,7). Then Arctan% converges in distribution to a



random variable that is uniformly distributed on [0,27) as n — oo.

The significance of Theorem 1 is that even though the variance of the noise can change from
pixel to pixel, the phase of the Haar-type wavelet transform is identically distributed at each
location. Furthermore, the phases at nearest-neighbor locations are uncorrelated in the wavelet
transform at scale 1. (Correlation in other neighboring locations introduced by the wavelet
transform, if any, is a problem to be further investigated, but such spurious correlation seems
not to affect our numerical results.)

The significance of Theorem 2 is that as n increases, that is to say, as the time of observation
for the emission tomography image increases, the Poisson-type noise becomes more and more
similar to the Gaussian noise needed to apply Theorem 1. Theorem 2 is essentially a central
limit theorem result.

Wavelet Phase-based Denoising Schemes. Based on the wavelet phase properties ex-
plored above, we developed the following denoising algorithms:

I. Edge Tracking. Asshown above, the wavelet phase of regular Poisson noise is asymptotically
uniformly distributed on [0, 27). On the other hand, the “true edges” of an image separate two
neighboring regions, and the neighboring edge pixels usually have similar gradient directions.
Since the phase of wavelet transform of an image is the gradient direction of a smoothed version
of the image, it is reasonable to say that, for a true edge, there must exist at least one neighboring
edge pixel in a direction roughly orthogonal to the gradient direction, which has a roughly similar
wavelet phase. Otherwise, the edge pixel is most likely caused by noise. We developed a numerical
algorithm called “edge tracking” to implement this idea. For details of the algorithm, we refer

the reader to [LLIN94].

I1. Local Phase Variance Thresholding. Another denoising scheme that exploits wavelet phase
focuses on local wavelet phase variation. For each scale k and each pixel (i,j), let
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where M}, is a positive integer. The mean wavelet phase at (7, j) is defined by

k.
_ w
Pkf(l,j) = ArctanM.

W f(e,7)

The difference between the phase of (W f(z,7), Wykf(l,j))

o Wy f(
ke = Arctan——-——"~
PRI ) = Arctangpr g )



and ka(l,j) is expected to be small if the pixel (z,7) is “true edge” but large if the pixel (1, j)
is an edge generated by noise. Therefore, one might distinguish true edges from noisy edges by
thresholding P* f(z, ) — ka(l,j) This technique is called “local phase variance thresholding.”

I11. Scale Phase Variation Thresholding. We can also discriminate noisy edges from true edges
by considering phase changes from scale to scale. For a true edge, the wavelet phase should not
change very much from scale to scale, since the image at each scale is a smoothed version of
the image of the previous scale. But for a spurious edge due to noise, the independence of the
noise at different locations can be expected to lead to different wavelet phases at different scales.
This observation leads to a denoising technique we call “scale phase variation thresholding”: if
|P¥+1(4,7) — P*(4, )| exceeds a threshold, the edge pixel is discarded as spurious at both scales
kand k£ + 1.

3 Numerical Experiments

We conducted numerical experiments on a Sun workstation with an X Windows system. The
programs are written in C and Fortran; some IMSL (International Mathematics and Statistics
Library) routines were called to generate Poisson random numbers. Figure 1 is the Shepp-Logan
phantom. It consists of 10 ellipses, each with a different gray level. This phantom has been used
as a standard to test the accuracy of restoration algorithms. Figure 2 is the “raysum image” (or
undistorted sinogram) of the Shepp-Logan phantom. A simulated sinogram is given in Figure 3.
Figures 4 to 8 give some numerical results obtained in this study. The size of the original image
(Shepp-Logan phantom) is 128 x128 and the size of the sinogram is 180x 128, though in Figures
2 and 3, we display only the first 128 rows of the sinogram. The pixel values of all images are
normalized to 8 bits (ranged from 0 to 255). The same noisy sinogram, shown in Figure 3, was
used for all of Figures 4 through 8; it had a total of about 2 million photons.

Figure 4 is the image reconstructed from a noisy sinogram using the convolution back pro-
jection (CBP) method. Small features in the Shepp-Logan phantom are virtually undetectable.
This indicates that a filtering algorithm is necessary before applying the CBP algorithm. Figure
5 is the image reconstructed from the noisy sinogram, using CBP in conjunction with a parabola
filter. Some small features present in the Shepp-Logan phantom can be discerned, but the image
is blurred. Figure 6 is the image reconstructed from the noisy sinogram, using CBP with a
wavelet modulus filter. In order to obtain Figure 6, a wavelet transform was performed up to 3
scales. Modulus thresholding values were 0.2 for scale 1, 0.1 for scale 2, and 0.05 for scale 3. The
decay rate from one scale to the next was thresholded by 0.1. (These values were determined
by trial and error and are roughly optimal among the values considered.) Some small features
of the Shepp-Logan phantom can be discerned in Figure 6, but the image quality is not good,
perhaps inferior to that of Figure 5. Figures 7 and 8 are images obtained from the noisy sinogram
by using CBP combined with one of the wavelet phase filters proposed here. In Figure 7, the
wavelet phase filter is used with a wavelet modulus filter of the sort used in obtaining Figure 6;



Figure 8 was obtained without any wavelet modulus filter. The phase variation from one scale
to the next is thresholded to be £. In Figures 7 and 8, two small features of the Shepp-Logan
phantom can be seen fairly clearly, though others, notably those at the bottom of the phantom
near the center, are still not so clear.

On the basis of subjective evaluation of the restored PET images, it appears to us that features
of the original image are restored somewhat more clearly by using the wavelet phase filter than
using the wavelet modulus filter (compare Figure 7 or Figure 8 with Figure 6). Moreover, the
wavelet phase filter appears to outperform the conventional linear low-pass filter (compare Figure
7 or Figure 8 with Figure 5). Further evaluation of results is a matter for future research. We
claim that the evidence suggests, at the very least, that the wavelet phase filter shows promise
for emission tomography imaging.
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Fig. 1. Shepp-Logan Phantom

Fig. 3. Noisy Raysum

Fig. 2. Raysum Image

Fig. 4. CBP Reconstruction
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Fig. 7. Modulus+Phase Filter Fig. 8. Wavelet Phase Filter
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